Possibilities and plans for materials research using neutron beams at the MARIA Reactor

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK

Outline:

- The MARIA Reactor
- Experimental hall
- MARIA NEUTRON LABORATORY MNL
- Instruments
- Preparations for the creation of the MNL laboratory

National Centre for Nuclear Research Narodowe Centrum Badań Jądrowych (NCBJ)

MARIA Reactor

Reactor type	pool-type reactor with pressurized fuel channels
Start operation	1974
Thermal power	Max. 30 MW,
Nominal power	19-26 MW
Fuel	MC-5 19,7 % 485 g U-235 U ₃ Si ₂ MR-6 19,75 % 485 g U-235 UO ₂ -Al
Thermal neutron flux	2,5 × 10 ¹⁴ n/cm ² ·s
Fast neutron flux	2 x 10 ¹⁴ n/cm ² ·s
Moderator	H ₂ O; beryllium
Reflector	graphite
Licence	2025, Relicensing to

Current main reactor applications:

- production of radioisotopes,
- testing of fuel and structural materials for nuclear power engineering,

- neutron transmutation doping of silicon,
- neutron modification of materials
- research in neutron and condensed matter physics
- *neutron radiography,*
- neutron activation analysis,
- neutron beams in medicine
- training in the field of reactor physics & technology.

MARIA Reactor

- reflector support structure
 beam tube compensator joint
- ARODOW CENTRUM ADAŃ DROWYCI

6. beryllium block7. ionization chambers shield

The experimental hall of neutron scattering laboratory before 2017 comprised 7 thermal neutron instruments:

- 2 neutron spectrometers
- 2 neutron diffractometers
- 2 small angle scattering (SANS) difractometers
- Neutron/gamma radiography tomography facility

EXPERIMENTAL HALL before 2017

MARIA NEUTRON LABORATORY MNL

Open access on the application competition

- E2 Flat Cone Diffractometer,
- E3 Residual Stress Analysis Diffractometer,
- E4 Two-Axis Diffractometer,
- E5 Four-Circle Diffractometer,
- E6 Focusing Diffractometer.

HZB

NIERK

PLANNED ARRANGEMENT @ THE MARIA EXPERIMENTAL HALL

PLANNED ARRANGEMENT @ THE MARIA EXPERIMENTAL HALL

All diffractometers are equipped with 2-dimensional position sensitive He³ neutron detectors and focusing monochromators

E2. Flat cone diffractometer

Monochromator, Cu (220), λ=0.91 Å Ge (311), λ=1.21 Å, PG (002), λ=2.41 Å; 4 x 2D PSD 30 x 30 cm

E3. Diffractometer for Microstructure and Residual Stress Analysis Monochromator Si (400), Double focusing, $\lambda = 1.48$ Å; 2D PSD 30 x 30 cm

E4. Two-Axis Diffractometer.

Monochromator PG (002): $\lambda = 2.4$ Å or Ge (113): $\lambda = 1.2$ Å; 2D PSD 20 x 20 cm

E5. Four-Circle Diffractometer.

Monochromator Cu(220); $\lambda = 0.9$ Å or PG(002), $\lambda = 2.4$ Å, PSD 9 x 9 cm

E6. Focusing Diffractometer.

Monochromator PG (002) $\lambda = 2.4$ Å double focusing, two 2D PSD each 30 x 30 cm

E2 diffractometer - Possiblity of tilting the detector from the horizontal scattering plane

https://www.helmholtz-berlin.de/pubbin/igama_output?modus=datei&did=628

E2 diffractometer

NARODOWE CENTRUM BADAŃ JADROWYCH ŚWIERK Journal of large-scale research facilities, 4, A129 (2018) https://creativecommons.org/licenses/by/4.0/

E3 diffractometer for internal stress studies in macroscopic elements

9

Journal of large-scale research facilities, 2, A100 (2016) https://creativecommons.org/licenses/by/4.0/

E3 diffractometer

20

Journal of large-scale research facilities, 2, A100 (2016) https://creativecommons.org/licenses/by/4.0/

E4 diffractometer

Journal of large-scale research facilities, 3, A104 (2017) https://creativecommons.org/licenses/by/4.0/

E4 diffractometer

https://www.helmholtz-berlin.de/pubbin/igama_output?modus=einzel&gid=1699

E5 diffractometer

E6 diffractometer

Neutron Scattering Instrumentation at the Research Reactor BER II Berlin Neutron Scattering Center – BENSC, 2007

E6 diffractometer

Neutron Scattering Instrumentation at the Research Reactor BER II Berlin Neutron Scattering Center – BENSC, 2007

Neutron Radiography facility main parameters

```
100 < L/D < 200

neutron flux density = 1.1 \times 10^7 n cm<sup>-2</sup> s<sup>-1</sup> (at L/D = 150)

ILL 2.9 x 10<sup>9</sup> n cm<sup>-2</sup> s<sup>-1</sup> at L/D = 100

Converter screen size: 250 x 250 mm

Converters:

gamma : Gd2 O2 S: Tb

neutrons: <sup>6</sup>Li:ZnS:Cu, AI, Au (green light)

Camera: CCD ORCA-ER (Hammamatsu)
```

Linear resolution: 0.1 mm, time resolution: 1 s

Objects: medium size technical devices Processes: water migration in porous systems self-diffusion in water

Modeling of E2 shield from HZB

The main systems (sample and analyser tables, and control) of the E1 spectrometer deployed on the granite floor for training at NCBJ

Concrete floor

Pressurized air, He recovery, cooling water, N2 and He installations

National Recovery and Resilience Plan (KPO): MNL Maria Neutron Laboratory

Eligible expenses:25 124 047,06 PLNFunding:19 830 000,00 PLN

- Helium recovery and liquefaction station
- Liquid helium and nitrogen dewars
- Adaptation of shields
- CEPH based reliability cluster for storing measurement data
- Computers
- Software
- Modernization of the radiography station
- Modernization of rooms for MNL in the LBM building

Rzeczpospolita Polska Sfinansowane przez Unię Europejską **NextGenerationEU**

Thank you

www.ncbj.gov.pl